

ML Series Miniature Linear Actuators

Linear Motion Solutions

ML Series Overview

Rail/Housing

SIMO® process ensures precision mounting, accurate installation and lightweight composition. Ceramic Coated Body for corrosion resistance and long life.

Nut

- Brass Inserts for system mounting and integrity.
- Built-in magnet accommodates home, limit and position sensors.
- Anti-Backlash Nut (Optional) for applications which require high bi-directional accuracy and repeatability.

Motor

Stepper motors available in standard NEMA 11, 14, 17, 23, metric frame sizes or add your own.
Servo motors available in 40 and 60 mm motors.

Lead Screw

Large diameter, antifriction coated screw allows for longer lengths by decreasing screw whip and increasing column strength. 1 mm, 2 mm, 5 mm, 10 mm, 12 mm, 16 mm, 25 mm, and 38 mm leads.

"Dovetail" Style Carriage

PTFE polymer material has fourteen plain bearing surfaces providing low friction for smooth and quiet linear motion. Notched "dovetail" carriage provides easier alignment and assembly. Features extra mounting holes for ease of installation and multi-axis assemblies.

Linear Guide Supports

Provide increased load and moment capacities and overall rigidity to the system.

Available single or dual rails with one or two runnerblocks per rail.

Dovetail Clamps

Dovetail Clamps secure unit on all four surfaces. Two screw design helps ensure quick and easy alignment during installation.

Thrust Bearings

Duplexed back to back installation of deep groove ball bearings provides high stiffness and allows for increased thrust loads, rotational speed and repeatability.

Internal Coupling

Rigid polymer insert coupling for increased smoothness and minimal backlash.

Seal Strip

Ultra-wear-resistant MDS nylon prevents particulates or contaminants from entering or exiting actuator.

Motor Mount Adapter (MLC)

Adapter plate designed to fit any manufacturer's motor. Compensates for variations in pilot diameter, depth, shaft diameter, length and mounting screw patterns.

Motor Mount

Specially constructed with an optimized length, resulting in an overall shorter system with PBC Linear™ brand stepper motors.

ML Series Linear Actuators

ML Advantage

- · Small, Compact Profile 28 x 32 mm
- Patent Pending SIMO[®] Process
 Ensures precision mounting, accurate installation and lightweight composition.
- Lead Screw Driven High accuracy and precise repeatability
- Multi-Axis Configurations
- · Long Travel Lengths Up to 650 mm

Table of Contents

Technical Data	4
Dimensional Data	5, 11
Performance Data	6-7
Ordering Options	8
Building Your ML Actuator	9
Multi-Axis Mounting	9
Applications	9
Linear Guide Support	10
MLC Series	12
Motor Mount Assembly	13
MLD Series	14
MLB Series	16
Motor Options	17-19
Accessories	20-24
Application Data Sheet	25

Accessories

Motor Mount Assembly

Riser Plates

Seal Strip

Stepper and Servo Motors

Machine tools are built on precision machined castings or weldments. Why shouldn't your actuator be built the same?

PBC Linear has revolutionized traditional machining with the patent pending SIMO™ (Simultaneous Integral Milling Operation).

SIMO process uses synchronized cutters, eliminating built-in extrusion variances by machining all critical edges concurrently in one pass. This ensures tight tolerances, limited variance and a remarkably straight and repeatable surface at negligible additional cost!

Typical Aluminum Extrusion Issues

The typical aluminum extrusion process produces a natural bow, twist and variance. Costly straightening and aligning is traditionally used to combat this variance, resulting in a semi-straight aluminum extrusion that drives the cost up.

As tolerances get tighter, the cost of machining with conventional processes increases dramatically over the SIMO process.

- Patent Pending Machining Process
- · High Precision Mounting Surfaces
- Tight Tolerances ± 0.025mm (0.001 in)

ML Advantage

Using the machine tooled precision and rigid surfaces sustained by the SIMO $^{\text{m}}$ process, the ML's bridge gantry design can support 1 or 2 linear guides on the sides of the ML.

These supports work together to increase load capacities and sustain stability while utilizing recirculating caged-ball technology to provide smooth and quiet linear motion guidance.

Technical Data

ML SERIES - Carriage only								
Size		mm	28 x 32	in	1.10 x 1.26			
MAX Load - Lite Preload - anti-backlash - Standard	Fx	N	44 267	lbf	10 60			
	Fy		107		24			
	Fz		178		40			
	Mx		1.4		12.4			
MAX Moments	Му	Nm	1.4	lbf-in	12.4			
	Mz		1.4		12.4			
Bending Moment of Inertia	ly	am4	2.4	in4	0.058			
(second moment of area)	lz	cm ⁴	4.4	in ⁴	0.106			

See page 24 for technical data on linear guide supports

1 - 3 -			3				
Base Weight without Motor			0.060		0.130		
Add for 100 mm of stroke		Kg	0.150	lbf	0.340		
Total Carriage Mass		ĸy	0.020	IDI	0.044		
Total Carriage Mass & Top F	Plate		0.059		0.130		
Coefficient of Friction			0.	19			
MAX Speed		m/s	1	in/s	75		
MAX Stroke Length			650		25.6		
MIN Stroke Length		mm	5	in	0.200		
Nominal Screw Diameter			10.0		0.375		
Max RPM		3000					
No Load Torque Nut - Lite Preload - anti - Normal Preload - a - Standard		Nm	0.0565 0.1060 0.0070	lbf-in	0.500 0.940 0.062		
Linear Guide Supports - Single Linear Guide - Dual Linear Guide		Nm	0.017 0.034	lbf-in	0.15 0.30		
Seal Strip - with Seal Strip - without Seal Strip		Nm	0.028 0	lbf-in	0.25 0		
Screw Lead Accuracy*	mm/ mm	0.0006	in/in	0.0006			
Normal Operating	MIN	*0	18	٥٦	32		
Temperature (Wider ranges available)	MAX	°C	98	°F	176		

^{*}Higher accuracies are available to 0.0001 mm/mm (in/in). Contact manufacturer for details. Specifications are subject to change without notice.

$$\frac{Fy_A}{Fy} + \frac{Fz_A}{Fz} + \frac{Mx_A}{Mx} + \frac{My_A}{My} + \frac{Mz_A}{Mz} <= 1$$

Center of Gravity for Moment Calculations

External Dovetail Easy Sketch

Dimensional Data

RECOMMENDED OVERTRAVEL PER SIDE

Knob or Hand Crank = 5mm Stepper Motor = 10mm Servo Motor = 20mm

How to Calculate Body Length

- **1)** Enter 19 mm
- **2)** Select (5, 10 or 20 mm) for overtravel on idle end (See recommended overtravel above.)
- 3) Specify stroke length in mm
- 4) Select (51 or 71 mm) for carriage length
- **5)** Select (5, 10 or 20 mm) for overtravel on idle end (See recommended overtravel above.)
- 6) Add amounts together and enter SUBTOTAL
- **7)** Enter TOTAL BODY LENGTH (Round to nearest 10 mm)
- **8)** When ORDERING enter TOTAL BODY LENGTH in BODY LENGTH column.

BODY LENGTH CALCULATION TAE	Example	
IDLE END CAP = 19mm	19	19
OVERTRAVEL IDLE END (5, 10 or 20mm)		10
STROKE LENGTH		155
CARRIAGE LENGTH (51 or 71mm)		71
OVERTRAVEL DRIVE END (5, 10 or 20mm)		10
(Add Amounts 1-5) + ENTER SUBTOTAL (mm) =		265
TOTAL BODY LENGTH (Round Subtotal to nearest 10mm)		270

Performance Data

The load rating and system speed must both be accounted for when sizing a lead screw system. The nut threads and screw threads form a plane bearing system.

The PV limit of a polymer material is the point at which friction-generated heat can no longer be expelled at a rate to prevent the material from overheating. Such overheating while under stress can cause permanent deformation of the material. Ignoring how the system's speed and loading relate to the nut material's PV rating can lead to dramatically shorter thread life. The primary modes of failure for lead screw systems are wear and PV. By staying within the PV envelope of the screw and nut, one can ensure long life of the nut without premature wear.

Maximum Cantilevered Length

Maximum Travel Speeds

Ordering Options

Lead Screw

- Large 10 mm diameter lead screw reduces whip and increases column strength allowing longer stroke lengths
- Lead options*: 1, 2, 5, 10, 12, 16 and 25 mm. 3 mm (0.125"), 10 mm (0.400"), 25 mm (1"), 38 (1.5") *Contact manufacturer for other available sizes
- Nominal Lead Screw Diameter = 10 mm (0.375")
- Screw Interia = $4.169 \times 10^{-6} \text{ kg-m}^2/\text{m}$ $1.5 \times 10^{-5} \text{ oz.-in.sec.}^2/\text{in.}$
- Lead Screw Length = Body Length + 32.27 mm

Nut Type

- Standard nut F_X =262 N (60 lb) or anti-backlash nut F_X =44 N (10 lb)
- Optional anti-backlash nut ideal in applications requiring high bi-directional accuracy and repeatability

Seal Strip with Carriage Bracket

- Ultra wear-resistant molybdenum disulfide impregnated nylon
- Prevents debris from entering or exiting actuator
- Seal strip is 725mm in length (Can be cut shorter using sharp pair of scissors.)

ML Actuator Build, Mount, Use

Build Your ML Actuator

Step 1

Configure Your System Axis

- A. Determine if you need an external linear guide for support (p 10)
- B. Calculate the body length (p 5)

Step 2

Choose the Drive Method

- A. Motor pre-mounted and tested by PBC Linear? → MLB (p 16)
- B. Ready to mount your own motor? → MLC (p 12)
- C. Driven by hand? → MLD (p 14)

Step 3

Choose How to Mount Axis

A. Choose dovetail clamps or riser plates (Use riser plates with NEMA 17 and 23 motors) (p 21)

Step 4

Choose End of Travel and Home Limit Switches/Sensors

- A. Determine mounting type/location (bracket type)
- B. Choose from list of compatible sensors

Repeat 1-5 for Each Axis

Step 5

Order Your System 1-800-962-8979 or 1-815-389-5600

Questions? Call an Application Engineer 1-888-777-0556

Multi-Axis Mounting

ML actuators are designed to perform well in X Y and other Cartesian arrangements. The actuator body forms a strong beam with higher moment loading capacity.

Special dovetail slots on all sides allow the actuators to be mounted on their bottom surface or on either side.

Carriage brackets and special wedge mounting clamps allow for precise and rigid mounting arrangements. Linear guides

can be installed on one or both sides of the actuator with one or two runner blocks on each rail for greater rigidity in gantry applications.

Multi-axis gantries can also be created by combining the ML with other actuators such as the PL or MT Series.

- Medical
- Biotech
- Instrument Automation
- Packaging
- Pick & Place
- Semi-conductor
- Scanning

ML Applications

The ML miniature actuator has a combination of compactness and (60 lbf) 265 N pound thrust power gives this actuator an edge for automation applications where space is critical. Plus, the SIMO® machined rail surface and zero backlash lead screw assembly ensures accuracy and precision for syringe pumps and optical control applications.

Linear Guide Supports

The ML series features the unique option for dual external linear guides (also available with single linear guide option). These re-circulating ball runner blocks assure high speed precision as well as enhanced load capacities and stability.

Support Options to Create Variable Levels of Performance

-	a abuda al Data			(1) S	ingle	(2) [Dual		(1) Single		(2) I	Dual
	echnical Data Fr Guide Supp			# of runner blocks on each guide					# of ru	inner bloc	ks on each guide	
Lille	ai Guide Supp	UI LS		1	2	1	2		1	2	1	2
	Anti-Backlash Lite Preload			44	44	44	44		10	10	10	10
MAX Load	Anti-Backlash Normal Preload	Fx		89	89	89	89		20	20	20	20
	Standard Nut		N	267	267	267	267	lbf	60	60	60	60
				180	250	445	890		40	56	100	200
	Fz			267	356	445	890		60	80	100	200
	Mx			1.8	3.6	8.6	18		16	32	76	160
MAX	Moments	Му	Nm	1.8	5.0	3.6	10	lbf-in	16	44	32	88
		Mz		1.8	5.0	3.6	10		16	44	32	88
Bending Mo	oment of Inertia	ly	cm ⁴	2.4	2.4	2.4	2.4	in ⁴	0.058	0.058	0.058	0.058
(Second M	loment of Area)	lz	CIII	4.4	4.4	4.4	4.4	111	0.106	0.106	0.106	0.106
Base W	eight without Motor		V =	0.127	0.136	0.195	0.205	lbf	0.280	0.300	0.430	0.450
Add fo	Add for 100 mm of Stroke		Kg	0.180	0.180	0.210	0.21	וטו	0.400	0.400	0.460	0.460
Total Carriage Mass Kg			0.109	0.117	0.159	0.175	lbm	0.240	0.257	0.350	0.385	
Coe	fficent of Friction			0.190		0.010			0.190		0.010	

Note

- Moment arms for calculating moments should be measured from the center of the extrusion
- 2. Limit switches must be used in order to prevent the carriage from contacting the actuator end blocks, resulting in damage
- 3. Servo drive system, recommended overtravel of 20 mm
- 4. Stepper motors or manual hand cranks system, add 5 mm of over-travel

Dimensional Data

Single Linear Guide Supports

INCLUDES:

- (1) rail, (1) runner block & aluminum alloy L shaped carriage bracket
- or -
- (1) rail, (2) runner blocks & aluminum alloy L shaped carriage bracket

Dual Linear Guide Supports

INCLUDES:

- 2) rails, (1) runner block & aluminum alloy U shaped carriage bracket
- or -
- (2) rails, (2) runner blocks & aluminum alloy U shaped carriage bracket

MLC Series (Motor Mount Only)

- Includes motor mount with coupling
- Includes motor spacer (if required)
- Precision machined body
- · Small, compact design
- Smooth and quiet operation
- High acceleration, speed and rigidity

PBC Linear stepper motors do not require a spacer due to the shorter shaft length. A spacer is required for any other manufacturer's motor. The spacer compensates for several dimensions which commonly vary amongst motor manufacturers (shaft diameter, shaft length, pilot diameter, pilot depth, bolt hole diameter, bolt type).

NOTE: Not all combinations are possible. Contact manufacturer for available combinations. Body lengths are available in 1 mm increments up to 701 mm. Standard lengths are multiples of 10 mm. When possible round up to nearest multiple of 10 mm. NEMA 11 stepper motors typically do not have enough torque to drive the anti-backlash nuts. Customers are responsible for doing torque calculations to ensure the motor is properly sized. Specifications are subject to change without notice.

Motor Mount Assembly

■ ML Series Actuator
■ Motor Mount & Spacer
■ PBC Stepper Motor **Assembly Dimensions** Spacer A **Motor Frame Size** Recommended for **NEMA 11** Stepper Motor 0 16.0 57.3 SINGLE 26.3 30.0 4X M2.5 Clearance Ø2.9 TYP 66.3 DOUBLE 23.0 Ø22.0 Ø15.9 23.0 30.0 TRIPLE Spacer "A" Recommended for **NEMA 14** Stepper Motor • 0 52.3 SINGLE — 16.0 26.3 4X M3 35.0 Ø3.4 Clearance TYP 63.3 TRIPLE 26.0 TYP Ø22.0 26.0 35.0 Ø15.9 Recommended for **NEMA 17** Stepper Motor 16.0 26.3 66.1 SINGLE 4X M3 Clearance 42.0 -Ø3.4 TYP Ф ♦ 31.0 Ø22.0 Ø15.9 Ø22.0 31.0 42.0 74.6 TYP DOUBLE TRIPLE Spacer "A" ACCESS HOLE Recommended for **NEMA 23** Stepper Motor 36.3 77.3 SINGLE 4 X M5.0 X 0.8 4X M4 Tap Thru Tap Thru \oplus 90.3 $\phi_{38.2} \phi_{24.6}$ Ø24.6 47.1 56.5 DOUBLE 112.3 ′°**⊕** TRIPLE P. ϕ

MLD Series (Hand Driven shaft or knob)

- Perfect for hand-operated precision control
- Manual brake optional
- Textured knob for both positioning and braking
- Precision machined body
- · Small, compact design
- Great repeatability

MLD Ordering Guide

NOTE: Not all combinations are possible. Contact manufacturer for available combinations. Body lengths are available in 1mm increments up to 701mm. Standard lengths are multiples of 10mm. When possible round up to nearest multiple of 10mm. Specifications are subject to change without notice.

Dimensional Data

MLB Series (Integrated Motor)

- Full stock of open and closed loop stepper motors and servo motors
- Available in NEMA 11,14,17, 23
- · Precision machined body
- · Small compact design
- · High acceleration, speed, and rigidity
- Pre-engineered and assembled for easy installation

MLB Ordering Guide MLB028D X XX X X #### Series Linear Guide Supports* Lead Nut Type Seal Strip # of Carriages Body Length 1 1 Carriage Motor or Lead O No External Rail AH 1mm 2 Standard Nut Screw Driven 1 (1) Rail, (1) Runner Block - XY-2 Brkt (R) 1 With Seal Strip AG 2mm 4 Anti-backlash (light preload) 2 Carriages See page 11 28 x 32 mm 2 (1) Rail, (2) Runner Blocks - XY-2 Brkt (R) & XY Bracket AX 5mm 6 Anti-backlash (normal preload) 3 3 Carriages for body length calculation table 3 (2) Rail, (1) Runner Block - XY-3 Brkt AJ 10mm 4 4 Carriages 4 (2) Rail, (2) Runner Blocks - XY-3 Brkt BD 12mm NOTE: Contact 250mm = 02505 (1) Rail, (1) Runner Block - XY-2 Brkt (L) AF 16mm 6 (1) Rail, (2) Runner Blocks - XY-2 Brkt (L) ordering multiple AW 25mm 7 No Seal Strip - XY-1 Brkt *(L) = Left (R) = Right Χ XX X Χ X 0 Motor Location Motor Make Motor Frame Size Motor Power Motor Feature Configuration Hybrid wiring (8 wires), flying leads, B NEMA 11 (28mm) B Single Stack **S** Straight PBC Linear™ O Standard L Left Open loop stepper motor C NEMA 14 (35mm) C Double Stack* no encoders [hybrid wiring can be R Right F NEMA 17 (42mm) D Triple Stack bi-polar or uni-polar] **B** Bottom G NEMA 23 (56mm) * not available with NEMA 14 T Top **FINAL** MLB028D X XX X X XXXX X X X X XX 0 PART#

NOTE: Not all combinations are possible. Contact manufacturer for available combinations. Body lengths are available in 1 mm increments up to 701 mm. Standard lengths are multiples of 10 mm. When possible round up to nearest multiple of 10 mm. Longer lead times apply to non-standard lengths. NEMA 11 stepper motors typically do not have enough torque to drive the anti-backlash nuts. Customers are responsible for doing torque calculations to ensure the motor is properly sized. Specifications are subject to change without notice.

Stepper Motor Options

PBC Linear brand stepper motors are designed to reduce length in the ML actuator. Single, double and triple stack motors are available in each size. See page 18 for dimensional data.

Motor Locations

Using universal motor mounts, PBC Linear's ML series mini-actuators give our customers the freedom for limitless mounting options. Straight (in-line), top, bottom or side motor mounting allows the ML series to fit seamlessly into any specified application.

Wiring Harnesses Plug Connector included with all Stepper Motor Equipped MLB Series Actuators

Wiring Diagram

4 Lead (bipolar)

NEMA 11 Series

4 Lead Part Number 6200727

NEMA 14 Series

4 Lead Part Number 6200728

NEMA 17 Series

4 Lead Part Number 6200490

NEMA 23 Series

4 Lead Part Number 6200491

Stepper Motor

NEMA 11 (28mm)

NEMA 14 (35mm)

NEMA	Motor	Current per Phase	Holding	Torque	Detent Torque		t Torque Rotor Intertia		Length	Weights	Model	
Rating	Power	A	mN • m	oz-in	mN • m	oz-in	g-cm²	oz-in²	mm (in)	kg (lb)	P/N#	
NEMA 11	Single	1	50	7.08	5	0.71	9	0.05	31 (1.21)	0.10 (0.22)	6200297	
NEMA 11	Double	0.67	90	12.75	6	0.85	12	0.07	40 (1.56)	0.15 (0.33)	6200298	
NEMA 11	Triple	1	100	14.16	8	1.13	18	0.10	51 (2.01)	0.20 (0.44)	6200299	
NEMA 14	Single	0.40	60	8.5	10	1.42	12	0.07	26 (1.01)	0.15 (0.33)	6200300	
NEMA 14	Triple	0.85	100	14.16	15	2.12	20	0.11	37 (1.44)	0.21 (0.46)	6200302	
NEMA 17	Single	1.50	360	50.99	15	2.12	57	0.31	39.8 (1.57)	0.28 (0.62)	6200303	
NEMA 17	Double	1.50	490	69.41	25	3.54	82	0.45	48.3 (1.90)	0.36 (0.79)	6200304	
NEMA 17	Triple	1.50	630	89.24	30	4.25	123	0.68	62.8 (2.47)	0.60 (1.32)	6200305	
NEMA 23	Single	1.50	500	70.82	22	3.12	135	0.74	41 (1.61)	0.42 (0.93)	6200306	
NEMA 23	Double	1.50	1000	141.64	40	5.66	260	1.43	54 (2.13)	0.60 (1.32)	6200307	
NEMA 23	Triple	1.40	1650	233.71	70	9.91	460	2.53	76 (2.99)	1.00 (2.20)	6200308	

NEMA 17 (42mm)

NEMA 23 (56mm)

[47.14 +0.20] [56.4] 1.856 +.008 2.22 -.000

0

Motor Couplings

Motor Coupling (HUB & Disk)

- Compensates for motor and screw misalignment
- Electrically isolating
- Balanced design

Disk

FOR USE WITH NEMA 11, 14, 17 MOTORS

HUBS P/N #	Bore*	OD	HUB Length (LH)	Coupling Length (L)	Shaft Penetration	Set Screw	Moment of Inertia (lb-in^2)	Moment of Inertia (kg x m^2)
6200129	3 mm	12.7 mm	5.6 mm	15.9 mm	5.6 mm	M3	0.0056"	1.64E-06
6200286	5 mm	12.7 mm	5.6 mm	15.9 mm	5.6 mm	M3	0.0050"	1.47E-06
6200350	6 mm	12.7 mm	5.6 mm	15.9 mm	5.6 mm	M3	0.0047"	1.37E-06
6200113	0.125"	0.500"	0.222"	0.625"	0.222"	M3	0.0056"	1.64E-06
6200349	0.250"	0.500"	0.222"	0.625"	0.222"	M3	0.0045"	1.32E-06

For Use with NEMA 23 Motors Only

HUBS P/N #	Bore*	OD	HUB Length (LH)	Coupling Length (L)	Shaft Penetration	Set Screw	Moment of Inertia (lb-in^2)	Moment of Inertia (kg x m^2)
6200130	4 mm	19.1 mm	7.6 mm	22.2 mm	7.6 mm	M3	0.0069	2.02E-06
6200131	5 mm	19.1 mm	7.6 mm	22.2 mm	7.6 mm	M3	0.0068	1.99E-06
6200132	6 mm	19.1 mm	7.6 mm	22.2 mm	7.6 mm	M3	0.0066	1.94E-06
6200133	8 mm	19.1 mm	7.6 mm	22.2 mm	7.6 mm	M3	0.0061	1.79E-06
6200114	0.1875"	0.750"	0.300"	0.875"	0.300"	M3	0.0068	1.99E-06
6200115	0.2500"	0.750"	0.300"	0.875"	0.300"	M3	0.0065	1.91E-06
6200116	0.3125"	0.750"	0.300"	0.875"	0.300"	M3	0.0062	1.82E-06

^{*}Contact PBC linear if required bore is not listed.

Disk P/N #	Material	0	D		ional ness	Rated	Torque	Brake '	Torque	Para Misalig	allel Inment	Axial I	Motion	Moment of Inertia
		(mm)	(in)	(Deg/ Nm)	(Deg /lb-in)	(Nm)	(lb-in)	(Nm)	(lb-in)	(mm)	(in)	(mm)	(in)	(kg x m^2)
6200148	Acetal	12.7	0.50	0.636	0.072	0.69	6	3.9	34	0.1	0.004	0.05	0.002	2.93E-08
6200149	Acetal	19.1	0.75	0.38	0.043	2.25	20	10.5	93	0.2	0.008	0.10	0.004	5.87E-08

NOTE: Motor coupling assembly (hubs & disk) are included in MLB & MLC Series actuators. One hub of the coupling is integral to the lead screw drive system. Alternate coupling styles are not available

Ordering Accessories

When ordering ML accessories, use the part number (P/N) to specify which accessory you want when placing your ML actuator order. If you have technical question contact a PBC Linear Application Engineer at at **1-800-962-8979**.

Motor Mount Assembly - Replacement Parts

Motor Mount Assembly - NEMA 11/14/17

Includes:

- (1) Motor Mount Cover (4) BHCS M3 x 0.5 x 6 mm
- P/N: MLB028A-BMMC-KIT

Includes:

- (1) Motor Mount Bracket (3) SHCS M3 x 0.5 x 8 mm
- P/N: MLB028A-MTRMNT-UNI-ASY-KIT

Includes:

(1) Pulley Belt (3 mm pitch) P/N: **6140032** (2) Timing Pulley, 9 mm x 5 mm P/N: 6140035

Motor Mount Assembly - NEMA 23

Includes:

- (1) Motor Mount Cover
- P/N: MLB028A-BMMC-23-KIT (4) BHCS M3 x 0.5 x 8 mm

Includes:

Includes:

(1) Pulley Belt (3 mm pitch)	P/N: 6140032
(1) Timing Pulley, 9mm x 6.35 mm	P/N: 6140039
(1) Timing Pulley, 9 mm x 5 mm	P/N: 6140035

Mounting Hardware (Clamps, Plates & Sensor Kits)

Dovetail Clamps

Two screw design helps ensure quick and easy alignment during installation.

Kit Includes:

(2) M3 Dovetail Clamp (4) M3 x 10mm SHCS

M3 SHCS COUNTER BORES MAX. SCREW TORQUE = .8 N-m (7 in-lbf)

Single Dovetail Clamp Only

Dovetail Clamp Kit

P/N: MLA028A-HDC-M3

P/N: MLA028A-HDC-M3-KIT

Riser Plates

Includes:

- 1. (4) M3 x 10mm SHCS
- 2. (2) M3 Dovetail Clamp
- 3. (2) M5 x 16mm SHCS
- 4. (1) 8mm or 15mm Riser Plate

Recommended for NEMA 14 & 17 Motor

8 mm Riser Plate only	P/N: MLA028A-RSRPLT-08
8 mm Riser Plate Kit	P/N: MLA028A-RSRPLT-08 -KIT

Recommended for NEMA 23 Motor

15 mm Riser Plate only	P/N: MLA028A-RSRPLT-15
15 mm Riser Plate Kit	P/N: MLA028A-RSRPLT-15-KIT

- (1) Riser plate (8 or 15mm)
- (4) M3 x 10mm screws
- (1) M3 x 6mm screw
- (2) Dovetail clamps
- (1) M3 x 12mm screw
- (2) M5 x 16mm screw (optional)

Compatible Sensors: OM-E2S-W2 style)

Typical Applications: ML Actuator gantry's with (2) linear guides

Riser Plate Sensor Kit P/N: MLA028A-RSRPLT-08A-KIT Riser Plate Sensor Kit P/N: MLA028A-RSRPLT-15A-KIT

Kit Includes:

- (1) Bracket (1) OM-Y92E-C1R6 Bracket
- (3) M3 X 4mm screws (1) M4 X 5mm set screw

(1) Flag, 5mm sensing distance

Compatible Sensors: OM-E2S-Q1 style

Typical Applications: ML Actuators with one or two linear guide(s)

P/N: MLB028A-BRKTA-KIT Linear Guide Sensor Kit

T-Slot Sensor Kit

Kit Includes:

- (1) Bracket
- (1) M2 X 8mm screw
- (1) M2 nut

Compatible Sensors: PBC Linear 6200XXX Series Sensors **Typical Applications:** ML Actuator with zero or one linear guide(s)

T-Slot Sensor Kit P/N: MLA028A-SENADT-KIT

* Note: Sensor mounting kits do not include a sensor. The appropriate sensor should be ordered separately.

Proximity Sensors

Super Compact Proximity Sensors

NOTE: 2.9-dia. vinyl-insulated round cable with 2/3 conductors. (Conductor cross section: 0.14 mm², Insulator diameter: 0.9 mm), Standard length: 1m

Sensing	Sensing Distance	Sensor Series	Output Configuration	Cable: 5 m	Flying Lead	Cable: 275 mm M8 Quick Disconnect	
Surface				Normally Open (NO)	Normally Closed (NC)	Normally Open (NO)	Normally Closed (NC)
End	1.6 mm	OM-E2S-Q	NPN	OM-E2S-Q13-□	OM-E2S-Q14-5M	OM-E2S-Q13-U2	OM-E2S-Q14-U2
EIIU			PNP	OM-E2S-Q15-□	OM-E2S-Q16-5M	OM-E2S-Q15-U2	OM-E2S-Q16-U2
Front/Ton	nt/Top 2.5 mm	OM-E2S-W	NPN	OM-E2S-W23-□	OM-E2S-W24-5M	OM-E2S-W23-U2	OM-E2S-W24-U2
Front/Top			PNP	OM-E2S-W25-□	OM-E2S-W26-5M	OM-E2S-W25-U2	OM-E2S-W26-U2
Bottom	n/a	PBC Linear 6200XXX	NPN				
			PNP				

 \square = length of cable 5M" = 5 meters with flying lead; U2 = 275mm with quick disconnect

Operation Status	Output Configuration P/N #		Timing Chart	Output Circuits	
NO	NPN	OM-E2S-W23-□ OM-E2S-Q13-□	Sensing Object Present Not present Output Transistor (Load) OFF Operation Indicator (Orange) OFF	Proximity Sensor Black*	
NC	NPN	OM-E2S-W24-□ OM-E2S-Q14-□	Sensing Object Not present Output Transistor (Load) Operation Indicator (Orange) Present Not present ON OFF OPERATION OFF OPERATION ON OFF	Output Blue 0 V * Load current: 50 mA MAX	
NO	PNP	OM-E2S-W25-□ OM-E2S-Q15-□	Sensing Object Present Not present Output Transistor (Load) OFF Operation Indicator (Orange) OFF	Proximity Black	
NC	PNP	0M-E2S-W26-□ 0M-E2S-Q16-□	Sensing Object Present Not present Output Transistor (Load) OFF Operation Indicator (Orange) OFF	Main Circuit * Load Urrent: 50 mA MAX	

Magnetic Sensor Switch Specifications

Notes:

Protection Circuit

- 1. Units: Gauss Parallel. Measuring standard target: Ø15.5 x Ø8 x 5t (Anisotrophy rubber magnet)
- 2. Sine wave X Y Z three directions three times each direction 11 ms each time
 3. Double amplitude 1.5 mm 10Hz-55Hz-10Hz (Sweep 1 min.) X Y Z three directions 1 hour each time

Reverse polarity, Short-circuit

Model P/N:		OM-E2S-W13 OM-E2S-W14	OM-E2S-W23 OM-E2S-W24	OM-E2S-Q15 OM-E2S-Q16	OM-E2S-W25 OM-E2S-W26		
Sensing surface		Front	Тор	Front	Тор		
Sensing distance		1.6 mm ± 15%	2.5 mm ± 15%	1.6 mm ± 15%	2.5 mm ± 15%		
Set distance		0 to 1.2 mm	0 to 1.9 mm	0 to 1.2 mm	0 to 1.9 mm		
Differential travel		10% MAX of sensing distance					
Detectable object type	•	Ferrous metal					
Standard target object	t	Iron, 12 x 12 x 1 mm	Iron, 15 x 15 x 1 mm	Iron, 12 x 12 x 1 mm	Iron, 15 x 15 x 1 mm		
Response frequency (see note)		1 kHz min.					
Power supply voltage (operating voltage range)		12 to 24V DC, ripple (p-p): 10% max., (10 to 30V DC)					
Current Consumption	,	13 mA max. at 24 VDC (no-load)					
Operation Mode (with sensing object approaching)		OM-E2S 3 models: NO OM-E2S 4 models NC					
Control Output	Load Current	NPN open collector (30 V D	output 50 mA max. C max)	PNP open collector output 50 mA max. (30 V DC max.)			
control output	Residual voltage	1.0 V max. with a load current of 50 mA and a cable length of 1 m					
Indicator		Operation indicator (orange)					
Protection Circuits		Reverse polarity connection and surge absorber					
Ambient temperature	Ambient temperature Operating		-25°C to 70°C (-13°F to 158°F) with no icing or condensation				
	Storage Operating	-40°C to 85°C (-40°F to 185° F) with no icing or condensation 35% to 90% (with no condensation)					
Ambient humidity	Storage	35% to 95% (with no condensation)					
Temperature influence	-	± 15% max. of sensing distance at 23° in the temperature range of -25 to 70° C					
Voltage Influence		± 2.5% MAX of sensing distance in rated voltage range ± 10%					
Insulation resistance		50 M MIN (500V VDC) between current carry parts and case					
Dielectric strength		1,000 VAC, 50/60 Hz for 1 min between current carry parts and case					
Vibration resistance		Destruction: 10 to 55 Hz, 1.0 mm double amplitude for 2 hours each in X, Y and Z directions					
Shock resistance		Destruction: 500 m/s² (1640 ft/s²) 3 times each in X, Y and Z directions					
Connection Method		Pre-wired standard length 1 m (39.37 in)					
Weight (packed state)		Approx. 10 g (0.35 oz)					
Material/Case		Polyarylate resin					
		. 175.7.10.12					

Maintenance Kit System Parts • Seal Strip Kit

Kit Includes: (Carriage bracket sold separately.)

- 1. (1) Seal Strip Ultra-wear resistant MDS nylon
- 2. (1) Retainer Bracket
- 3. (1) Adjuster Bracket
- 4. (3) PHC M2 x 0.4 x 5 mm
- 5. (1) Hexagon Nut, M2 x 0.4
- 6. (4) Bearings

Seal Strip Kit P/N: **MLA028A-SSAR-KIT**

Seal strip is 725 mm in length and can be cut shorter using sharp pair of scissors.

Application Data Sheet

RFQ:		FAX COMPLETE FORMS TO: 1(815) 389-5790				
Date:						
Company:					Fz	
Contact:		₽IVIZ _				
Address:				iis	LOAD	
Phone:					- Y	
E-mail:				$\frac{F_{y_A}}{F_V} + \frac{F_{z_A}}{F_Z} + \frac{Mx_A}{Mx} + \frac{My_A}{My} + \frac{Mz_A}{Mz} <= 1$		
			X-AXIS	Y-AXIS	Fy Fz + Mx + My + Mz <=	
APPLICATION DESCRIPTION	 Sketch if available 	able.				
Project Name:Project Description:			-	s: □ Concept □ Prototype	□ Design □ Existing	
Project Timing:				•		
Quantity:Components:						
Environment: ☐ Clean Room ☐ Other		•	-	_ □ Food/Washdow		
SYSTEM TYPE						
☐ Single Axis ☐ X-Y	Axis	☐ Y-Z Axis		X-Y-Z Axis	☐ X1/X2-Y-Z Axis	
Axi $\frac{Fy_A}{Fy} + \frac{Fz_A}{Fz} + \frac{Mx_A}{Mx} + \frac{My_A}{My} + \frac{Mz_A}{Mz}$	≔ 1 s Orientat	ion: □ Vertica	ıl 🛭 Horizont	al □ Inverted □	Angled	
		AXIS		Comments:		
1 1 1 1 / 1 / 2	X	Υ	Z		 	
Load N (lbf)						
Moment Nm (lbf-in) Stroke mm (in)						
Velocity mm/s (in/s)		 	+			
Acceleration m/s ² (ft/s ²)			+		· · · · · · · · · · · · · · · · · · ·	
Deceleration m/s ² (ft/s ²)						

A Pacific Bearing Company

Engineering Your Linear Motion Solutions

Global Footprint

PBC Linear Worldwide Headquarters

6402 E. Rockton Road, Roscoe, Illinois 61073 USA Tel: +1.815.389.5600 • Toll-Free: +1.800.962.8979 Fax: +1.815.389.5790 sales@pbclinear.com • pbclinear.com

PBC Linear Europe GmbH European Headquarters

Bonner Straße 363, 40589 Duesseldorf, Germany Tel: +49 211 545590 20 • Fax: +49 211 545590 39 info@pbclinear.eu • pbclinear.eu

PBC-MOONS China Headquarters

168 Mingjia Road, Minhang District, Shanghai 201107, P.R. China Tel: +86 21 52634688 • Fax: +86 21 52634098 info@moons.com.cn • www.moons.com.cn

Range of Offerings

Distributed by

PBC Linear has a global network of distributors with thousands of locations worldwide.

Visit **pbclinear.com** to find a distributor near you.

All information within this catalog is correct at the time of printing. However, in some instances adjustments need to be made, and this may cause specific information to become outdated.

For the most current version, please reference our online catalog through the resources menu at pbclinear.com.

©2013 PBC Linear®, A Pacific Bearing Company • "PBC Linear" and "PBC Lineartechnik GmbH" are subsidiaries of Pacific Bearing Company ("PBC"). Specifications are subject to change without notice. It is the responsibility of the user to determine and ensure the suitability of PBC's products for a specific application. PBC's only obligation will be to repair or replace, without charge, any defective components if returned promptly. No liability is assumed beyond such replacement. Other corporate and product names, images, text and logos may be trademarks or copyrights of other companies and are used only for explanation and to the owners benefit; without intent to infringe. This document may not be reproduced, in part or whole, without the prior written authorization of PBC. Consult pbclinear.com for the latest technical updates.

LITLAT-002 v4 (04-2021)