APBCLinear

ML Series Miniature Linear Actuators

Linear Motion Solutions

ML Series Overview

Rail/Housing

SIMO® process ensures precision mounting, accurate installation and lightweight composition. Ceramic Coated Body for corrosion resistance and long life.

Nut

- Brass Inserts for system mounting and integrity.
- Built-in magnet accommodates home, limit and position sensors.
- Anti-Backlash Nut (Optional) for applications which require high bi-directional accuracy and repeatability.

Motor

Stepper motors available in standard NEMA 11, 14, 17, 23, metric frame sizes or add your own.
Servo motors available in 40 and 60 mm motors.

"Dovetail" Style Carriage

PTFE polymer material has fourteen plain bearing surfaces providing low friction for smooth and quiet linear motion. Notched "dovetail" carriage provides easier alignment and assembly. Features extra mounting holes for ease of installation and multi-axis assemblies.
 high stiffness and allows for increased thrust loads, rotational speed and repeatability.

Internal Coupling

Rigid polymer insert coupling for increased smoothness and minimal backlash.

Seal Strip
Ultra-wear-resistant MDS nylon prevents particulates or contaminants from entering or exiting actuator.

Motor Mount Adapter (MLC)

Adapter plate designed to fit any manufacturer's motor. Compensates for variations in pilot diameter, depth, shaft diameter, length and mounting screw patterns.

ML Series Linear Actuators

ML Advantage

- Small, Compact Profile-28 x 32 mm
- Patent Pending SIMO ${ }^{\circledR}$ Process

Ensures precision mounting, accurate installation and lightweight composition.

- Lead Screw Driven - High accuracy and precise repeatability
- Multi-Axis Configurations
- Long Travel Lengths - Up to 650 mm

MLC Series
Motor Mount Only

Specially designed motor mounts and couplings for easy mounting and extended life.

MLB Series
Motor Driven

Pre-mounted stepper or servo motors.

Table of Contents

Technical Data 4
Dimensional Data. .5, 11
Performance Data 6-7
Ordering Options 8
Building Your ML Actuator 9
Multi-Axis Mounting 9
Applications 9
Linear Guide Support 10
MLC Series 12
Motor Mount Assembly 13
MLD Series 14
MLB Series 16
Motor Options 17-19
Accessories 20-24
Application Data Sheet 25
Seal Strip

Sensors

Stepper and Servo Motors

Machine tools are built on precision machined castings or weldments. Why shouldn't your actuator be built the same?

PBC Linear has revolutionized traditional machining with the patent pending $\mathrm{SIMO}^{\text {TM }}$ (Simultaneous Integral Milling Operation).

SIMO process uses synchronized cutters, eliminating built-in extrusion variances by machining all critical edges concurrently in one pass. This ensures tight tolerances, limited variance and a remarkably straight and repeatable surface at negligible additional cost!

Typical Aluminum Extrusion Issues

The typical aluminum extrusion process produces a natural bow, twist and variance. Costly straightening and aligning is traditionally used to combat this variance, resulting in a semi-straight aluminum extrusion that drives the cost up.

As tolerances get tighter, the cost of machining with conventional processes increases dramatically over the SIMO process.

- Patent Pending Machining Process
- High Precision Mounting Surfaces
- Tight Tolerances $\pm 0.025 \mathrm{~mm}$ (0.001 in)

ML Advantage

Using the machine tooled precision and rigid surfaces sustained by the SIMO $^{\text {TM }}$ process, the ML's bridge gantry design can support 1 or 2 linear guides on the sides of the ML.

Bridge Gantry Design

4X Reference Qualified Edge

These supports work together to increase load capacities and sustain stability while utilizing recirculating caged-ball technology to provide smooth and quiet linear motion guidance.

Technical Data

ML SERIES - Carriage only					
Size		mm	28×32	in	1.10×1.26
MAX Load - Lite Preload - anti-backlash - Standard	Fx	N	$\begin{gathered} 44 \\ 267 \end{gathered}$	lbf	$\begin{aligned} & 10 \\ & 60 \end{aligned}$
	Fy		107		24
	Fz		178		40
MAX Moments	Mx	Nm	1.4	Ibf-in	12.4
	My		1.4		12.4
	Mz		1.4		12.4
Bending Moment of Inertia (second moment of area)	ly	cm4	2.4	in ${ }^{4}$	0.058
	Iz		4.4		0.106
See page 24 for technical data on linear guide supports					
Base Weight without Motor		Kg	0.060	Ibf	0.130
Add for $\mathbf{1 0 0 ~ m m ~ o f ~ s t r o k e ~}$			0.150		0.340
Total Carriage Mass			0.020		0.044
Total Carriage Mass \& Top Plate			0.059		0.130
Coefficient of Friction		0.19			
MAX Speed		m / s	1	in/s	75
MAX Stroke Length		mm	650	in	25.6
MIN Stroke Length			5		0.200
Nominal Screw Diameter			10.0		0.375
Max RPM		3000			
No Load Torque Nut - Lite Preload - anti-backlash - Normal Preload - anti-backlash - Standard		Nm	$\begin{aligned} & 0.0565 \\ & 0.1060 \\ & 0.0070 \end{aligned}$	Ibf-in	$\begin{aligned} & 0.500 \\ & 0.940 \\ & 0.062 \end{aligned}$
Linear Guide Supports - Single Linear Guide - Dual Linear Guides		Nm	$\begin{aligned} & 0.017 \\ & 0.034 \end{aligned}$	lbf-in	$\begin{aligned} & 0.15 \\ & 0.30 \end{aligned}$
Seal Strip - with Seal Strip - without Seal Strip		Nm	$\begin{gathered} 0.028 \\ 0 \end{gathered}$	lbf-in	$\begin{gathered} 0.25 \\ 0 \end{gathered}$
Screw Lead Accuracy*		$\begin{gathered} \mathrm{mm} / \\ \mathrm{mm} \end{gathered}$	0.0006	in/in	0.0006
Normal Operating Temperature (Wider ranges available)	MIN	${ }^{\circ} \mathrm{C}$	18	${ }^{\circ} \mathrm{F}$	32
	MAX		98		176

*Higher accuracies are available to $0.0001 \mathrm{~mm} / \mathrm{mm}$ (in/in). Contact manufacturer for details.
Specifications are subject to change without notice.

Dimensional Data

RECOMMENDED OVERTRAVEL PER SIDE
Knob or Hand Crank $=5 \mathrm{~mm}$
Stepper Motor $=10 \mathrm{~mm}$
Servo Motor $=20 \mathrm{~mm}$

How to Calculate Body Length

1) Enter 19 mm
2) Select (5,10 or 20 mm) for overtravel on idle end (See recommended overtravel above.)
3) Specify stroke length in mm
4) Select (51 or 71 mm) for carriage length
5) Select (5, 10 or 20 mm) for overtravel on idle end (See recommended overtravel above.)
6) Add amounts together and enter SUBTOTAL
7) Enter TOTAL BODY LENGTH (Round to nearest 10 mm)
8) When ORDERING enter TOTAL BODY LENGTH in BODY LENGTH column.

BODY LENGTH CALCULATION TABLE					Example
IDLE END CAP = 19mm				19	19
OVERTRAVEL IDLE END (5, 10 or $\mathbf{2 0 m m}$)					10
STROKE LENGTH					155
CARRIAGE LENGTH (51 or 71mm)					71
OVERTRAVEL DRIVE END (5, 10 or $\mathbf{2 0 m m}$)					10
(Add Amounts 1-5) + ENTER SUBTOTAL (mm) =					265
TOTAL BODY LENGTH (Round Subtotal to nearest 10 mm)					270
(8)					
	x	x	-0270-	x	x
	$\frac{\text { Seal Strip }}{\substack{0 \\ 1 \text { Wrine Seal strip }}}$	\# of Carriages 1 1 Cariage 2 2Caraiages 3 3 Carriages 4 4 Carriages	Body Length mm 	$\overline{\overline{\text { Motor Location }}}$ S Straight (in-Iine) R Right B Bottom T Top	$\begin{array}{\|l\|} \hline \text { Configuration } \\ \hline 0 \text { Standard } \\ \hline \end{array}$

Performance Data

The load rating and system speed must both be accounted for when sizing a lead screw system. The nut threads and screw threads form a plane bearing system.

The PV limit of a polymer material is the point at which friction-generated heat can no longer be expelled at a rate to prevent the material from overheating. Such overheating while under stress can cause permanent deformation of the material. Ignoring how the system's speed and loading relate to the nut material's PV rating can lead to dramatically shorter thread life. The primary modes of failure for lead screw systems are wear and PV. By staying within the PV envelope of the screw and nut, one can ensure long life of the nut without premature wear.

Torque to Raise Load
$\mathbf{T L}_{\mathbf{L}}(\mathrm{Nm})=$
$\frac{\text { Load }(\mathrm{N}) \times \text { Lead (mm) }}{2 \pi \times \text { Efficiency } \times 1000}$
$\mathbf{T L}$ (in-lbf) $=$
$\frac{\text { Load (lbf) } \times \text { Lead (in) }}{2 \pi \times \text { Efficiency }}$

Distance Between Supports

Maximum Cantilevered Length

Load on the Carriage N (Ibs.)
Maximum Travel Speeds

Body Length mm (in)
LEAD SCREW $\square 38 \mathrm{~mm}$ (1.50 ") $\square 10 \mathrm{~mm}$ (.400")
PITCH $\square 25 \mathrm{~mm}(1.00$ ") $\square 3 \mathrm{~mm}(.125$ ") $\square 1 \mathrm{~mm}(.039$ ")

80\% of Critical Speed

Body Length mm (in)

Ordering Options

Lead Screw

- Large 10 mm diameter lead screw reduces whip and increases column strength allowing longer stroke lengths
- Lead options*: 1, 2, 5, 10, 12, 16 and 25 mm . $3 \mathrm{~mm}\left(0.125^{\prime \prime}\right), 10 \mathrm{~mm}\left(0.400^{\prime \prime}\right), 25 \mathrm{~mm}\left(1^{\prime \prime}\right), 38\left(1.5^{\prime \prime}\right)$
*Contact manufacturer for other available sizes
- Nominal Lead Screw Diameter $=10 \mathrm{~mm}$ ($0.375^{\prime \prime}$)
- Screw Interia $=4.169 \times 10-6 \mathrm{~kg}^{-\mathrm{m}^{2} / \mathrm{m}}$
$1.5 \times 10-5$ oz.-in.sec. ${ }^{2} / \mathrm{in}$.)
- Lead Screw Length = Body Length + 32.27 mm

ML Options Provide You with a Perfect Fit System

Nut Type

- Standard nut $\mathrm{F}_{\mathrm{x}}=262 \mathrm{~N}(60 \mathrm{lb})$ or anti-backlash nut $\mathrm{F}_{\mathrm{x}}=44 \mathrm{~N}$ (10 lb)
- Optional anti-backlash nut - ideal in applications requiring high bi-directional accuracy and repeatability
- Magnet is built-in for use with home and position sensors
- Anti-Backlash light pre-load Nut limits Fx linear thrust

Anti-Backlash Nut

Seal Strip with Carriage Bracket

- Ultra wear-resistant molybdenum disulfide impregnated nylon
- Prevents debris from entering or exiting actuator
- Seal strip is 725 mm in length (Can be cut shorter using sharp pair of scissors.)

ML Actuator Build, Mount, Use

Build Your ML Actuator

Step 1
 Configure Your System Axis
 A. Determine if you need an external linear guide for support (p 10)
 B. Calculate the body length (p 5)

Step 2
Choose the Drive Method
A. Motor pre-mounted and tested by PBC Linear? \Rightarrow MLB (p 16)
B. Ready to mount your own motor? \Rightarrow MLC (p 12)
C. Driven by hand? \Rightarrow MLD ($p 14$)

Step 3

Choose How to Mount Axis

A. Choose dovetail clamps or riser plates (Use riser plates with NEMA 17 and 23 motors) (p 21)

Step 4

Choose End of Travel and Home Limit Switches/Sensors
A. Determine mounting type/location (bracket type)

B. Choose from list of compatible sensors

Repeat 1-5 for Each Axis

Step 5

Order Your System
1-800-962-8979 or
1-815-389-5600
Questions?
Call an Application Engineer
1-888-777-0556

Multi-Axis Mounting

ML actuators are designed to perform well in X Y and other Cartesian arrangements. The actuator body forms a strong beam with higher moment loading capacity.
Special dovetail slots on all sides allow the actuators to be mounted on their bottom surface or on either side.

Carriage brackets and special wedge mounting clamps allow for precise and rigid mounting arrangements. Linear guides can be installed on one or both sides of the actuator with one or two runner blocks on each rail for greater rigidity in gantry applications.

Multi-axis gantries can also be created by combining the ML with other actuators such as the PL or MT Series.

Superior Multi-Axis Mounting for Compact Applications

- Medical
- Biotech
- Instrument Automation
- Packaging
- Pick \& Place
- Semi-conductor
- Scanning

ML Applications

The ML miniature actuator has a combination of compactness and (60 lbf) 265 N pound thrust power gives this actuator an edge for automation applications where space is critical. Plus, the $\mathrm{SIMO}^{\circledR}$ machined rail surface and zero backlash lead screw assembly ensures accuracy and precision for syringe pumps and optical control applications.

Linear Guide Supports

The ML series features the unique option for dual external linear guides (also available with single linear guide option). These re-circulating ball runner blocks assure high speed precision as well as enhanced load capacities and stability.

Support Options to Create Variable Levels of Performance

Note:

1. Moment arms for calculating moments should be measured from the center of the extrusion
2. Limit switches must be used in order to prevent the carriage from contacting the actuator end blocks, resulting in damage
3. Servo drive system, recommended overtravel of 20 mm
4. Stepper motors or manual hand cranks system, add 5 mm of over-travel

Dimensional Data

Single Linear Guide Supports

Dual Linear Guide Supports

MLC Series (Motor Mount Only)

- Includes motor mount with coupling
- Includes motor spacer (if required)
- Precision machined body
- Small, compact design
- Smooth and quiet operation
- High acceleration, speed and rigidity

PBC Linear stepper motors do not require a spacer due to the shorter shaft length. A spacer is required for any other manufacturer's motor. The spacer compensates for several dimensions which commonly vary amongst motor manufacturers (shaft diameter, shaft length, pilot diameter, pilot depth, bolt hole diameter, bolt type).

MLC Ordering Guide

MLC028D	X	XX	X	X	X
Series	Linear Guide Supports*	Leads	Nut Type	Seal Strip	\# of Carriages
ML Series with motor mount $28 \times 32 \mathrm{~mm}$	0 No External Rail 1 (1) Rail, (1) Runner Block - XY-2 Brkt (R) 2 (1) Rail, (2) Runner Blocks - XY-2 Brkt (R) 3 (2) Rail, (1) Runner Block - XY-3 Brkt 4 (2) Rail, (2) Runner Blocks - XY-3 Brkt 5 (1) Rail, (1) Runner Block - XY-2 Brkt (L) 6 (1) Rail, (2) Runner Blocks - XY-2 Brkt (L) 7 No Seal Strip - XY-1 Brkt	AH 1 mm AG 2 mm AX 5 mm AJ 10 mm BD 12 mm AF 16 mm AW 25 mm	2 Standard Nut 4 Anti-backlash (light preload)	0 None 1 With Seal Strip \& XY Bracket	1 Carriage 22 Carriages 3 Carriages 44 Carriages NOTE: Contact manufacturer before ordering multiple carriages.

\#\#\#\#	X	X	X	X	X	0
Body Length	Motor Location	Motor Frame Size	Shaft OD	Coupling Material	Spacer Config	Config.
mm See page 11 for body length calculation table $\text { EX: } 90 \mathrm{~mm}=0090$ $250 \mathrm{~mm}=0250$	S Straight (in-line) L Left R Right B Bottom T Top	A NEMA 8 (20mm) B NEMA 11 (28 mm) C NEMA 14 (35mm) E Metric 40 F NEMA 17 (42 mm) G NEMA 23 (56/58mm)	A 3mm B 0.125 in C 4 mm D 0.1875 in E 5 mm F 6 mm G 0.25 in H 0.3125 in J 8mm	1 Acetal	A Standard	0 Standard
		At time of order, customer must declare their pilot diameter, shaft length and mounting hole pattern of the matching motor so that the proper spacer can be included.				

[^0]
Motor Mount Assembly

\square ML Series Actuator \square Motor Mount \& Spacer \square PBC Stepper Motor

Recommended for NEMA 17 Stepper Motor

Recommended for NEMA 23 Stepper Motor

MLD Series (Hand Driven shaft or knob)

- Perfect for hand-operated
precision control
- Manual brake optional
- Textured knob for both positioning and braking
- Precision machined body
- Small, compact design
- Great repeatability

MLD028D	-	X	XX	X	X	X
Series		Linear Guide Supports	Leads	Nut Type	Seal Strip	\# of Carriages
ML Series with knob/drive lead screw driven $28 \times 32 \mathrm{~mm}$		0 No External Rail (1) Rail, (1) Runner Block - XY-2 Brkt (R) (1) Rail, (2) Runner Blocks - XY-2 Brkt (R) (2) Rail, (1) Runner Block - XY-3 Brkt (2) Rail, (2) Runner Blocks - XY-3 Brkt (1) Rail, (1) Runner Block - XY-2 Brkt (L) (1) Rail, (2) Runner Blocks - XY-2 Brkt (L) 7 No Seal Strip - XY-1 Brkt	AH 1 mm AG 2 mm AX 5 mm AJ 10 mm BD 12 mm AF 16 mm AW 25mm	2 Standard Nut 4 Anti-backlash (light preload)	0 None 1 With Seal Strip \& XY Bracket	11 Carriage 22 Carriages 3 Carriages 44 Carriages NOTE: Contact manufacturer before ordering multiple carriages.

* (L) $=$ Left (R) $=$ Right

NOTE: Not all combinations are possible. Contact manufacturer for available combinations. Body lengths are available in 1 mm increments up to 701 mm . Standard lengths are multiples of 10 mm . When possible round up to nearest multiple of 10 mm . Specifications are subject to change without notice.

Dimensional Data

NOTE: Brake installed on side as default and can easily be changed to the top by the customer.

MLB Series (Integrated Motor)

- Full stock of open and closed loop stepper motors and servo motors
- Available in NEMA 11,14,17, 23
- Precision machined body
- Small compact design
- High acceleration, speed, and rigidity
- Pre-engineered and assembled for easy installation

MLB Ordering Guide

NOTE: Not all combinations are possible. Contact manufacturer for available combinations. Body lengths are available in 1 mm increments up to 701 mm . Standard lengths are multiples of 10 mm . When possible round up to nearest multiple of 10 mm . Longer lead times apply to non-standard lengths. NEMA 11 stepper motors typically do not have enough torque to drive the anti-backlash nuts. Customers are responsible for doing torque calculations to ensure the motor is properly sized. Specifications are subject to change without notice.

Stepper Motor Options

PBC Linear brand stepper motors are designed to reduce length in the ML actuator. Single, double and triple stack motors are available in each size. See page 18 for dimensional data.

Motor Locations

Using universal motor mounts, PBC Linear's ML series mini-actuators give our customers the freedom for limitless mounting options. Straight (in-line), top, bottom or side motor mounting allows the ML series to fit seamlessly into any specified application.

Wiring Harnesses Plug Connector included with all Stepper Motor Equipped MLB Series Actuators

NEMA 11 Series
4 Lead Part Number 6200727

NEMA 17 Series
4 Lead Part Number 6200490

Wiring Diagram

NEMA 14 Series

4 Lead Part Number 6200728

NEMA 23 Series
4 Lead Part Number 6200491

Stepper Motor

NEMA 11 (28mm)
NEMA 14 (35mm)

NEMA Rating	Motor Power	Current per Phase A	Holding Torque		Detent Torque		Rotor Intertia		Length mm (in)	Weights kg (lb)	Model P/N\#
			$\mathrm{mN} \cdot \mathrm{m}$	0z-in	$\mathrm{mN} \cdot \mathrm{m}$	0z-in	$\mathrm{g}-\mathrm{cm}^{2}$	0z-in ${ }^{2}$			
NEMA 11	Single	1	50	7.08	5	0.71	9	0.05	31 (1.21)	0.10 (0.22)	6200297
NEMA 11	Double	0.67	90	12.75	6	0.85	12	0.07	40 (1.56)	0.15 (0.33)	6200298
NEMA 11	Triple	1	100	14.16	8	1.13	18	0.10	51 (2.01)	0.20 (0.44)	6200299
NEMA 14	Single	0.40	60	8.5	10	1.42	12	0.07	26 (1.01)	0.15 (0.33)	6200300
NEMA 14	Triple	0.85	100	14.16	15	2.12	20	0.11	37 (1.44)	0.21 (0.46)	6200302
NEMA 17	Single	1.50	360	50.99	15	2.12	57	0.31	39.8 (1.57)	0.28 (0.62)	6200303
NEMA 17	Double	1.50	490	69.41	25	3.54	82	0.45	48.3 (1.90)	0.36 (0.79)	6200304
NEMA 17	Triple	1.50	630	89.24	30	4.25	123	0.68	62.8 (2.47)	0.60 (1.32)	6200305
NEMA 23	Single	1.50	500	70.82	22	3.12	135	0.74	41 (1.61)	0.42 (0.93)	6200306
NEMA 23	Double	1.50	1000	141.64	40	5.66	260	1.43	54 (2.13)	0.60 (1.32)	6200307
NEMA 23	Triple	1.40	1650	233.71	70	9.91	460	2.53	76 (2.99)	1.00 (2.20)	6200308

NEMA 17 (42mm)
NEMA 23 (56mm)

Motor Couplings

Motor Coupling (HUB \& Disk)

- Compensates for motor and screw misalignment
- Electrically isolating
- Balanced design

FOR USE WITH NEMA 11, 14, 17 MOTORS

HUBS P/N \#	Bore*	OD	$\begin{gathered} \text { HUB } \\ \text { Length (LH) } \end{gathered}$	Coupling Length (L)	Shaft Penetration	Set Screw	Moment of Inertia (lb-in^2)	Moment of Inertia ($\mathrm{kg} \mathrm{x} \mathrm{m}^{\wedge}$)
6200129	3 mm	12.7 mm	5.6 mm	15.9 mm	5.6 mm	M3	$0.0056^{\prime \prime}$	1.64E-06
6200286	5 mm	12.7 mm	5.6 mm	15.9 mm	5.6 mm	M3	0.0050 "	$1.47 \mathrm{E}-06$
6200350	6 mm	12.7 mm	5.6 mm	15.9 mm	5.6 mm	M3	$0.0047{ }^{\prime \prime}$	1.37E-06
6200113	0.125"	$0.500^{\prime \prime}$	$0.222^{\prime \prime}$	$0.625^{\prime \prime}$	$0.222^{\prime \prime}$	M3	$0.0056 "$	1.64E-06
6200349	0.250"	$0.500^{\prime \prime}$	$0.222^{\prime \prime}$	$0.625^{\prime \prime}$	$0.222^{\prime \prime}$	M3	$0.0045^{\prime \prime}$	$1.32 \mathrm{E}-06$

For Use with NEMA 23 Motors Only								
HUBS P/N \#	Bore*	OD	$\begin{gathered} \text { HUB } \\ \text { Length }(\mathrm{LH}) \end{gathered}$	Coupling Length (L)	Shaft Penetration	Set Screw	Moment of Inertia ($\mathrm{lb}-\mathrm{in}^{\wedge} 2$)	Moment of Inertia ($\mathrm{kg} \mathrm{x} \mathrm{m}^{\wedge}$)
6200130	4 mm	19.1 mm	7.6 mm	22.2 mm	7.6 mm	M3	0.0069	2.02E-06
6200131	5 mm	19.1 mm	7.6 mm	22.2 mm	7.6 mm	M3	0.0068	1.99E-06
6200132	6 mm	19.1 mm	7.6 mm	22.2 mm	7.6 mm	M3	0.0066	1.94E-06
6200133	8 mm	19.1 mm	7.6 mm	22.2 mm	7.6 mm	M3	0.0061	1.79E-06
6200114	$0.1875{ }^{\prime \prime}$	0.750 "	$0.300 "$	$0.875^{\prime \prime}$	$0.300^{\prime \prime}$	M3	0.0068	1.99E-06
6200115	0.2500 "	0.750 "	$0.300^{\prime \prime}$	0.875"	$0.300^{\prime \prime}$	M3	0.0065	$1.91 \mathrm{E}-06$
6200116	0.3125"	0.750 "	$0.300 "$	0.875"	$0.300^{\prime \prime}$	M3	0.0062	1.82E-06

*Contact PBC linear if required bore is not listed.

Disk P/N \#	Material	OD		Torsional Stiffness		Rated Torque		Brake Torque		Parallel Misalignment		Axial Motion		Moment of Inertia ($\mathrm{kg} \times \mathrm{m}^{\wedge}$)
		(mm)	(in)	$\begin{gathered} (\mathrm{Deg} / \\ \mathrm{Nm}) \\ \hline \end{gathered}$	$\begin{aligned} & (\mathrm{Deg} \\ & / \mathrm{lb-in}) \end{aligned}$	(Nm)	(lb-in)	(Nm)	(lb-in)		(in)	(mm)	(in)	
6200148	Acetal	12.7	0.50	0.636	0.072	0.69	6	3.9	34	0.1	0.004	0.05	0.002	2.93E-08
6200149	Acetal	19.1	0.75	0.38	0.043	2.25	20	10.5	93	0.2	0.008	0.10	0.004	5.87E-08

NOTE: Motor coupling assembly (hubs \& disk) are included in MLB \& MLC Series actuators. One hub of the coupling is integral to the lead screw drive system. Alternate coupling styles are not available

Ordering Accessories

When ordering ML accessories, use the part number (P / N) to specify which accessory you want when placing your ML actuator order. If you have technical question contact a PBC Linear Application Engineer at at 1-800-962-8979.

Motor Mount Assembly - Replacement Parts

Motor Mount Assembly - NEMA 11/14/17

Includes:
(1) Motor Mount Cover
(4) BHCS M $3 \times 0.5 \times 6 \mathrm{~mm}$

P/N: MLB028A-BMMC-KIT

Includes:
(1) Motor Mount Bracket
(3) SHCS M3 $\times 0.5 \times 8 \mathrm{~mm}$ P/N: MLBO28A-MTRMNT-UNI-ASY-KIT

(1) Pulley Belt (3 mm pitch)
P/N: $\mathbf{6 1 4 0 0 3 2}$
(2) Timing Pulley, $9 \mathrm{~mm} \times 5 \mathrm{~mm}$
P/N: $\mathbf{6 1 4 0 0 3 5}$

Motor Mount Assembly - NEMA 23

Includes:
(1) Motor Mount Cover
(4) BHCS M3 $\times 0.5 \times 8 \mathrm{~mm} \quad$ P/N: MLB028A-BMMC-23-KIT

Includes:
(1) Motor Mount Bracket
(3) SHCS M $5 \times 0.8 \times 8 \mathrm{~mm}$ P/N: MLB028A-MTRMNT-UNI-ASY-23-KIT

(1) Pulley Belt (3 mm pitch)	P/N: $\mathbf{6 1 4 0 0 3 2}$
(1) Timing Pulley, $9 \mathrm{~mm} \times 6.35 \mathrm{~mm}$	$\mathrm{P} / \mathrm{N}: \mathbf{6 1 4 0 0 3 9}$
(1) Timing Pulley, $9 \mathrm{~mm} \times 5 \mathrm{~mm}$	$\mathrm{P} / \mathrm{N}: \mathbf{6 1 4 0 0 3 5}$

Mounting Hardware (Clamps, Plates \& Sensor Kits)

Dovetail Clamps

Two screw design helps ensure quick and easy alignment during installation.

Kit Includes:

(2) M3 Dovetail Clamp
(4) M3 $\times 10 \mathrm{~mm}$ SHCS

M3 SHCS COUNTER BORES
MAX. SCREW TORQUE $=.8 \mathrm{~N}-\mathrm{m}$ ($7 \mathrm{in}-\mathrm{lbf})$

Single Dovetail Clamp Only	P/N: MLA028A-HDC-M3
Dovetail Clamp Kit	P/N: MLA028A-HDC-M3-KIT

Riser Plates

Includes:

1. (4) $\mathrm{M} 3 \times 10 \mathrm{~mm}$ SHCS
2. (2) M3 Dovetail Clamp
3. (2) M5 $\times 16 \mathrm{~mm}$ SHCS
4. (1) 8 mm or 15 mm Riser Plate

MAX. SCREW TORQUE $=.8 \mathrm{~N}-\mathrm{m}(7 \mathrm{in}-\mathrm{lbf})$

Recommended for NEMA 14 \& 17 Motor	
8 mm Riser Plate only	P/N: MLA028A-RSRPLT-08
$\mathbf{8} \mathrm{mm}$ Riser Plate Kit	P/N: MLA028A-RSRPLT-08 -KIT

Recommended for NEMA 23 Motor

15 mm Riser Plate only	P/N: MLA028A-RSRPLT-15
$\mathbf{1 5} \mathrm{mm}$ Riser Plate Kit	P/N: MLA028A-RSRPLT-15-KIT

Kit Includes:
(1) Riser plate (8 or 15 mm)
(2) Dovetail clamps
(4) M3 $\times 10 \mathrm{~mm}$ screws
(1) M3 $\times 12 \mathrm{~mm}$ screw
(1) M3 $\times 6 \mathrm{~mm}$ screw
(2) M5 $\times 16 \mathrm{~mm}$ screw (optional)

Compatible Sensors: OM-E2S-W2 style)
Typical Applications: ML Actuator gantry's with (2) linear guides

Riser Plate Sensor Kit	P/N: MLA028A-RSRPLT-08A-KIT
Riser Plate Sensor Kit	P/N: MLA028A-RSRPLT-15A-KIT

Linear Guide Sensor Kit

Kit Includes:
(1) Bracket
(1) OM-Y92E-C1R6 Bracket
(3) M3 X 4mm screws
(1) M4 X 5mm set screw
(1) Flag, 5 mm sensing distance

Compatible Sensors: OM-E2S-Q1 style
Typical Applications: ML Actuators with one or two linear guide(s)

T-Slot Sensor Kit

Kit Includes:
(1) Bracket
(1) M2 $\times 8 \mathrm{~mm}$ screw
(1) M2 nut

Compatible Sensors: PBC Linear 6200XXX Series Sensors Typical Applications: ML Actuator with zero or one linear guide(s)
T-Slot Sensor Kit P/N: MLA028A-SENADT-KIT

* Note: Sensor mounting kits do not include a sensor.

The appropriate sensor should be ordered separately.

Proximity Sensors

Super Compact Proximity Sensors

Sensing Surface	Sensing Distance	Sensor Series	Output Configuration	Cable: 5 m Flying Lead		Cable: 275 mm M8 Quick Disconnect	
				Normally Open (NO)	Normally Closed (NC)	Normally Open (NO)	Normally Closed (NC)
End	1.6 mm	OM-E2S-Q	NPN	OM-E2S-Q13-■	OM-E2S-Q14-5M	OM-E2S-Q13-U2	OM-E2S-Q14-U2
			PNP	OM-E2S-Q15-■	OM-E2S-Q16-5M	OM-E2S-Q15-U2	OM-E2S-Q16-U2
Front/Top	2.5 mm	OM-E2S-W	NPN	OM-E2S-W23-■	OM-E2S-W24-5M	OM-E2S-W23-U2	OM-E2S-W24-U2
			PNP	OM-E2S-W25-■	OM-E2S-W26-5M	OM-E2S-W25-U2	OM-E2S-W26-U2
Bottom	n/a	PBC Linear 6200XXX	NPN				
			PNP				

$=$ length of cable $5 \mathrm{M}^{\prime \prime}=5$ meters with flying lead; U2 $=275 \mathrm{~mm}$ with quick disconnect

Operation Status	Output Configuration	P/N \#	Timing Chart	Output Circuits
NO	NPN	$\begin{aligned} & \text { OM-E2S-W23-- } \\ & \text { OM-E2S-Q13-ए } \end{aligned}$	Sensing Object Present Not present Output Transistor ON (Load) OFF Operation Indicator ON (Orange) OFF	
NC	NPN	OM-E2S-W24- OM-E2S-Q14-		
NO	PNP	$\begin{aligned} & \text { OM-E2S-W25-[} \\ & \text { OM-E2S-Q15-C } \end{aligned}$	Sensing Object Present Not present ON Output Transistor OFF (Load) ON Operation Indicator ON \square (Orange) OFF	
NC	PNP	OM-E2S-W26- OM-E2S-Q16- \square	Sensing Object Present Not present Output Transistor ON (Load) OFF Operation Indicator ON (Orange) OFF	

Magnetic Sensor Switch Specifications

Dimensional:

Schematics:

NPN (Current Sinking)

PNP (Current Sourcing)

Pinout

Type	$\begin{aligned} & \text { 이 } \\ & \text { ì } \\ & \text { on } \end{aligned}$	$\begin{aligned} & \text { N} \\ & \text { O} \\ & \text { On } \end{aligned}$	$\begin{aligned} & \text { N్ర్ర } \\ & \text { M } \end{aligned}$	$\begin{aligned} & \text { N} \\ & \text { O } \\ & \text { ज } \end{aligned}$	N 0 0 0	$\begin{aligned} & \text { N} \\ & \text { N్ర } \\ & \text { O} \end{aligned}$	О - N -	О - N N
End Connector	Quick Disconnect				Wire			
Wire Length	300 mm				5 m			
Sensor Type	NPN		PNP		NPN		PNP	
Switching Logic (Solid State Output)	NC	NO	NC	NO	NC	NO	NC	NO
Operative Voltage	10-30V DC							
Switching Current	200 mA MAX							
Contact Rating	6 W MAX							
Current Consumption	20 ma @ 24V DC MAX							
Voltage Drop	1.5V MAX							
Leakage Current	0.05 mA MAX							
Cable	$\emptyset 3 \mathrm{~mm}, 3$ wire, polyurethane							
Indicator	Red	Yellow	Yellow	Yellow	Red	Yellow	Yellow	Yellow
Operating Frequency	1000 Hz							
Magnet Requirement (Note 1)	50	65	50	65	50	65	50	65
Temperature Range	$-10-70^{\circ} \mathrm{C}\left(+14-158^{\circ} \mathrm{F}\right)$							
Shock (Note 2)	50 g							
Vibratin (Note 3)	9 g							
Enclosure Classification	IEC 529 IP 67 (NEMA 6)							
Protection Circuit	Reverse polarity, Short-circuit							

Notes: 1. Units: Gauss Parallel. Measuring standard target: $\varnothing 15.5 \times \emptyset 8 \times 5 t$ (Anisotrophy rubber magnet)
2. Sine wave $\cdot X Y Z$ three directions \cdot three times each direction $\cdot 11 \mathrm{~ms}$ each time
3. Double amplitude $1.5 \mathrm{~mm} \cdot 10 \mathrm{~Hz}-55 \mathrm{~Hz}-10 \mathrm{~Hz}$ (Sweep 1 min .) $\cdot \mathrm{X} \mathrm{Y} \mathrm{Z} \mathrm{three} \mathrm{directions} \cdot 1$ hour each time

Model P/N:		OM-E2S-W13 OM-E2S-W14	$\begin{aligned} & \text { OM-E2S-W23 } \\ & \text { OM-E2S-W24 } \end{aligned}$	$\begin{aligned} & \text { OM-E2S-Q15 } \\ & \text { OM-E2S-Q16 } \end{aligned}$	$\begin{aligned} & \text { OM-E2S-W25 } \\ & \text { OM-E2S-W26 } \end{aligned}$
Sensing surface		Front	Top	Front	Top
Sensing distance		$1.6 \mathrm{~mm} \pm 15 \%$	$2.5 \mathrm{~mm} \pm 15 \%$	$1.6 \mathrm{~mm} \pm 15 \%$	$2.5 \mathrm{~mm} \pm 15 \%$
Set distance		0 to 1.2 mm	0 to 1.9 mm	0 to 1.2 mm	0 to 1.9 mm
Differential travel		10\% MAX of sensing distance			
Detectable object type		Ferrous metal			
Standard target object		Iron, $12 \times 12 \times 1 \mathrm{~mm}$	Iron, $15 \times 15 \times 1 \mathrm{~mm}$	Iron, $12 \times 12 \times 1 \mathrm{~mm}$	Iron, $15 \times 15 \times 1 \mathrm{~mm}$
Response frequency (see note)		1 kHz min.			
Power supply voltage (operating voltage range)		12 to 24 V DC, ripple (p-p): 10% max., (10 to 30 V DC)			
Current Consumption		13 mA max . at 24 VDC (no-load)			
Operation Mode (with sensing object approaching)		$\begin{aligned} & \text { OM-E2S-_ } 3 \text { models: NO } \\ & \text { OM-E2S-_ } 4 \text { models NC } \end{aligned}$			
Control Output	Load Current	NPN open collector output 50 mA max. (30 V DC max)		PNP open collector output 50 mA max. (30 V DC max.)	
	Residual voltage	1.0 V max. with a load current of 50 mA and a cable length of 1 m			
Indicator		Operation indicator (orange)			
Protection Circuits		Reverse polarity connection and surge absorber			
Ambient temperature	Operating	$-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ with no icing or condensation			
	Storage	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.185^{\circ} \mathrm{F}\right)$ with no icing or condensation			
Ambient humidity	Operating	35% to 90% (with no condensation)			
	Storage	35% to 95\% (with no condensation)			
Temperature influence		$\pm 15 \%$ max. of sensing distance at 23° in the temperature range of -25 to $70^{\circ} \mathrm{C}$			
Voltage Influence		$\pm 2.5 \%$ MAX of sensing distance in rated voltage range $\pm 10 \%$			
Insulation resistance		$50 \mathrm{M} \mathrm{MIN} \mathrm{(} 500 \mathrm{~V}$ VDC) between current carry parts and case			
Dielectric strength		1,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min between current carry parts and case			
Vibration resistance		Destruction: 10 to $55 \mathrm{~Hz}, 1.0 \mathrm{~mm}$ double amplitude for 2 hours each in X, Y and Z directions			
Shock resistance		Destruction: $500 \mathrm{~m} / \mathrm{s}^{2}\left(1640 \mathrm{ft} / \mathrm{s}^{2}\right) 3$ times each in X, Y and Z directions			
Connection Method		Pre-wired standard length 1 m (39.37 in)			
Weight (packed state)		Approx. $10 \mathrm{~g}(0.35 \mathrm{oz})$			
Material/Case		Polyarylate resin			

Maintenance Kit System Parts • Seal Strip Kit

Seal strips are engineered to last the life of the system. In the event that the strip becomes damaged by environmental contamination, PBC Linear offers a replacement seal strip kit.

Kit Includes: (Carriage bracket sold separately.)

1. (1) Seal Strip - Ultra-wear resistant MDS nylon
2. (1) Retainer Bracket
3. (1) Adjuster Bracket
4. (3) PHC M $2 \times 0.4 \times 5 \mathrm{~mm}$
5. (1) Hexagon Nut, M2 $\times 0.4$
6. (4) Bearings

Seal Strip Kit P/N: MLA028A-SSAR-KIT

Seal strip is 725 mm in length and can be cut shorter using sharp pair of scissors.

Application Data Sheet

FAX COMPLETE FORMS TO:
RFQ: \qquad 1(815) 389-5790

Date: \qquad
Company: \qquad
Contact: \qquad
Address: \qquad

Phone: \qquad
E-mail: \qquad

APPLICATION DESCRIPTION - Sketch if available.

Project Name: \qquad Project Status: Concept

- Design - Prototype - Existing

Project Description: \qquad
Project Timing: \qquad Target Pricing: \qquad
Quantity: \qquad Components

- Actuator Only - Actuator/Motor - Accessories \qquad
Environment:Clean Room General Shop Heavy Industrial
- Food/Washdown
- High Vibration \square Other \qquad

SYSTEM TYPE

Single Axis

Axi $\frac{F y_{A}}{F y}+\frac{F z_{A}}{F z}+\frac{M x_{A}}{M x}+\frac{M y_{A}}{M y}+\frac{M z_{A}}{M z}<=1$ s Orientation: Vertical \square Horizontal Inverted angled

	AXIS		
	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
Load N (lbf)			
Moment $\mathrm{Nm}(\mathrm{lbf-in})$			
Stroke $\mathrm{mm}(\mathrm{in})$			
Velocity $\mathrm{mm} / \mathrm{s}(\mathrm{in} / \mathrm{s})$			
Acceleration $\mathrm{m} / \mathrm{s}^{2}\left(\mathrm{ft} / \mathrm{s}^{2}\right)$			
Deceleration $\mathrm{m} / \mathrm{s}^{2}\left(\mathrm{ft} / \mathrm{s}^{2}\right)$			

\qquad
\qquad
\qquad
\qquad

PBCLinear

A Pacific Bearing Company Engineering Your Linear Motion Solutions

- PBC Linear Worldwide Headquarters

6402 E. Rockton Road, Roscoe, Illinois 61073 USA
Tel: +1.815.389.5600 • Toll-Free: +1.800.962.8979
Fax: +1.815.389.5790
sales@pbclinear.com•pbclinear.com

- PBC Linear Europe GmbH European Headquarters

Bonner Straße 363, 40589 Duesseldorf, Germany
Tel: +49 21154559020 • Fax: +49 21154559039
info@pbclinear.eu • pbclinear.eu

- PBC-MOONS China Headquarters

168 Mingjia Road, Minhang District, Shanghai 201107, P.R. China Tel: +86 2152634688 • Fax: +86 2152634098
info@moons.com.cn •www.moons.com.cn

Distributed by

PBC Linear has a global network of distributors with thousands of locations worldwide.

Visit pbclinear.com to find a distributor near you.

[^1]
[^0]: NOTE: Not all combinations are possible. Contact manufacturer for available combinations. Body lengths are available in 1 mm increments up to 701 mm . Standard lengths are multiples of 10 mm . When possible round up to nearest multiple of 10 mm . NEMA 11 stepper motors typically do not have enough torque to drive the anti-backlash nuts. Customers are responsible for doing torque calculations to ensure the motor is properly sized. Specifications are subject to change without notice.

[^1]: ©2013 PBC Linear ${ }^{\circledR}$, A Pacific Bearing Company • "PBC Linear" and "PBC Lineartechnik GmbH" are subsidiaries of Pacific Bearing Company ("PBC"). Specifications are subject to change without notice. It is the responsibility of the user to determine and ensure the suitability of PBC's products for a specific application. PBC's only obligation will be to repair or replace, without charge, any defective components if returned promptly. No liability is assumed beyond such replacement. Other corporate and product names, images, text and logos may be trademarks or copyrights of other companies and are used only for explanation and to the owners benefit; without intent to infringe. This document may not be reproduced, in part or whole, without the prior written authorization of PBC. Consult pbclinear.com for the latest technical updates. LITLAT-002 v4 (04-2021)

